## Introduction <br> to

Fourier transform

## Fourier series

$>$ Decompose $f(t)$ in terms of sine and cosine bases function
$>$ Similarity with $i, j$ and $k$ unit vectors. Unique representation in 3-D
$>$ Euclidean space: $\quad \vec{A}=A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k}$.
$>$ Orthonormal sets: $\hat{i}^{2}=\hat{j}^{2}=\hat{k}^{2}=1$ and $\hat{i} \cdot \hat{j}=\hat{j} \cdot \hat{k}=\hat{k} \cdot \hat{i}=0$,
$>$ Orthonormality condition: $A_{x}=\hat{i} \cdot \vec{A}, A_{y}=\hat{j} \cdot \vec{A}$ and $A_{z}=\hat{k} \cdot \vec{A}$.

Fourier series
$>$ Function $f(t)$ is periodic

$$
L(f(t+L)=f(t))
$$

$>$ Finite energy

$$
\int_{t_{0}}^{t_{0}+L}|f(t)|^{2} d t<\infty,
$$

$>$ Fourier series

$$
f(t)=\frac{a_{o}}{2}+\sum_{r=1}^{\infty}\left[a_{r} \cos \left(\frac{2 \pi r t}{L}\right)+b_{r} \sin \left(\frac{2 \pi r t}{L}\right)\right] .
$$

Fourier series
Orthogonal basis

$$
\begin{aligned}
& \mathrm{S}^{++} \\
& \int_{t_{0}}^{t_{0}+L} \sin \left(\frac{2 \pi p t}{L}\right) \cos \left(\frac{2 \pi r t}{L}\right) d t=0 \\
& \text { for all } p \text { and } r \text {, } \\
& \int_{t_{0}}^{t_{0}+L} \cos \left(\frac{2 \pi p t}{L}\right) \cos \left(\frac{2 \pi r t}{L}\right) d t= \\
& \begin{cases}L & \text { for } p=r=0, \\
\frac{1}{2} L & \text { for } p=r>0, \\
0 & \text { for } p \neq r\end{cases} \\
& \int_{t_{o}}^{t_{o}+L} \sin \left(\frac{2 \pi p t}{L}\right) \sin \\
& \left(\frac{2 \pi r t}{L}\right) d t= \\
& \begin{cases}0 & \text { for } p=r=0 \\
\frac{1}{2} L & \text { for } p=r>0, \\
0 & \text { for } p \neq r\end{cases}
\end{aligned}
$$

## Fourier series

## Extraction of coefficients:

$$
\begin{aligned}
a_{r} & =\frac{2}{L} \int_{t_{0}}^{t_{0}+L} f(t) \cos \left(\frac{2 \pi r t}{L}\right) d t, \\
b_{r} & =\frac{2}{L} \int_{t_{0}}^{t_{0}+L} f(t) \sin \left(\frac{2 \pi r t}{L}\right) d t .
\end{aligned}
$$

Fourier series: Interpretation
सी ड़िक
cDคc
A mathematical prism


Fourier series: Interpretation
Glass prism

(b)

Fourier transforms (FT)
$f(t)$ : not periodic, but decreases at infinity
Forward FT:

$$
\hat{f}(\omega)=\int_{-\infty}^{\infty} f(t) e^{-i \omega t} d t
$$

Inverse FT: $\quad f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i \omega t} d \omega$

General notation

Fourier transforms: specific notation

Direct (Forward) transform:

$$
X(F)=\int x(t) e^{(-j 2 \pi F t)} d t
$$

Inverse transform:

$$
x(t)=\int X(F) e^{(j 2 \pi F t)} d F
$$

## Fourier transforms: Examples

Fourier transform of rectangular train pulse defined as

$$
\begin{gathered}
x(t)=\{A,|t| \leq r / 2 \\
|t| \geq r / 2\}
\end{gathered}
$$

## Fourier transforms: Solution

$$
X(F)=\int_{-r / 2}^{r / 2} A e^{(-j 2} \pi_{F t)} d t=\operatorname{Ar}\{\sin (\pi F r) /(\pi F r)\}
$$



# सी डैक <br> cDAC 










## Power spectrum: Parseval's theorem

$$
\int_{-\infty}^{+\infty}|X(F)|^{2} d F=\int_{-\infty}^{+\infty}|x(t)|^{2} d t
$$

## Total Power is conserved.

## Power spectrum: Parseval's theorem

$$
\int_{-\infty}^{+\infty}|X(F)|^{2} d F=\int_{-\infty}^{+\infty}|x(t)|^{2} d t
$$

## Total Power is conserved.

Original singnal with frequency $200 \& 300 \mathrm{~Hz}$ frequency contenet


Power Spectrum of a Sinusoidal Wave


Fourier transforms: disadvantages


Fourier transforms: disadvantages
What happens after removal of handful of Fourier coefficients?
Gibb's phenomenon


Fourier transforms: disadvantages

Conclusions:
$>$ Not suitable for transient signals with sharp changes.
$\Rightarrow$ Sine and cosine basis sets: de-localized
$>$ Time information difficult to retrieve.
$>$ Solution: Use a thorn to remove a thorn!!
$>$ Use Wavelet transforms

# Discrete Fourier transformation (DFT) 

$>$ Discrete Time domain
$>$ Complexity: $O\left(N^{2}\right)$

## > Danielson and Lanczos Leema (1942)

FFT: Radix-2 Algorithm

Forward transform:

$$
X(k)=\sum_{n=0}^{N-1} x(n) W_{N}^{k n} \quad 0 \leq k \leq N-1
$$

$$
W_{N}=e^{-j 2 \pi / N}
$$

## Inverse transform

$$
x(n)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) W_{N}^{-n k} \quad 0 \leq n \leq N-1
$$

## Symmetry property

$$
W_{N}^{k+N / 2}=-W_{N}^{k}
$$

Periodicity property

$$
W_{N}^{k+N}=W_{N}^{k}
$$

## Divide and conquer rule

$$
\begin{aligned}
X(k) & =\sum_{m=0}^{(N / 2)-1} f_{1}(m) W_{N / 2}^{k m}+W_{N}^{k} \sum_{m=0}^{(N / 2)-1} f_{2}(m) W_{N / 2}^{k m} \\
& =F_{1}(k)+W_{N}^{k} F_{2}(k) \quad k=0,1, \ldots, N-1
\end{aligned}
$$

## Periodicity property

$$
\begin{array}{rlrl}
X(k) & =F_{1}(k)+W_{N}^{k} F_{2}(k) & k=0,1, \ldots, \frac{N}{2}-1 \\
X\left(k+\frac{N}{2}\right) & =F_{1}(k)-W_{N}^{k} F_{2}(k) & k & =0,1_{1} \ldots, \frac{N}{2}-1
\end{array}
$$

$F_{1}(k) \& F_{2}(k)=(N / 2)^{2}$ complex multiplications each $W_{N}^{k}=(N / 2)$ complex multiplications
Total $=\mathrm{N}^{2} / 2+\mathrm{N} / 2$
Recursively apply the algorithm


सी $\begin{aligned} & \text { डैड डैक } \\ & \text { CEAC }\end{aligned}$




## References

1) Digital Signal Processing: Principles, Algorithms and Applications by John G. Proakis and Dimitris G. Manolakis, Prentice-Hall
2) Numerical Recipes: Art of Scientific Computing by William Press, Saul A. Teukolsky, William T. Vetterling and Brian P. Flannery, Cambridge University Press, (2007).
3)Fourier transform \& its applications by Ronald Bracewell, Tata-McGraw-Hill, Third Edition
4)Fast fourier transform and its applications by Oran Brigham, Prentice-Hall.

## Thank you

## sachinn@cdac.in

