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Abstract

Pareto law, which states that wealth distribution in societies have a
power-law tail, has been a subject of intensive investigations in statistical
physics community. Several models have been employed to explain this be-
havior. However, most of the agent based models assume the conservation
of number of agents and wealth. Both these assumptions are unrealistic.
In this paper, we study the limiting wealth distribution when one or both
of these assumptions are not valid. Given the universality of the law, we
have tried to study the wealth distribution from the asset exchange mod-
els point of view. We consider models in which a) new agents enter the
market at constant rate b) richer agents fragment with higher probability
introducing newer agents in the system c) both fragmentation and entry
of new agents is taking place. While models a) and c) do not conserve
total wealth or number of agents, model b) conserves total wealth. All
these models lead to a power-law tail in the wealth distribution pointing
to the possibility that more generalized asset exchange models could help
us to explain emergence of power-law tail in wealth distribution.

1 Introduction

A century ago, an Italian social economist Pareto collected and studied data of
distribution of income across several European countries. He observed that 80%
of the income is in 20% hands and the distribution of income has a power-law
tail, i.e. p(x) ∝ x−1−ν , where p(x) probability that an individual has income
x . The exponent ν is called Pareto index. The exponent measured by him for
different kingdoms and countries varied between 1.1 to 1.7. The distribution
of wealth also shows a similar behavior. The validity of Pareto law was ques-
tioned and reexamined many times. In modern times, the Japanese, Australian
and Italian personal income distribution have been shown to demonstrate a
log normal distribution for lower income coupled with power-law tail [1, 2, 3].
For wealth distribution, the distribution of wealth in rich indian families has a
power-law tail [4]. Same feature is observed in the wealths of Hungarian aris-
tocratic families [5]. Even for ancient Egyptian society, it has been conjectured
that the wealth distribution had power-law tail [6]. The empirical studies on
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data of the distribution of income and wealth in modern USA and UK show a
power-law tail as well[7]. All these studies suggest the existence of power-law
tail of wealth distribution and income distribution in different societies in differ-
ent parts of the world and it seems to be true in older as well as modern times.
However, the value of the exponent changes in different societies. We will be
attempt to explain wealth distribution from the viewpoint of asset exchange
models in this paper.

Given that the universality of Pareto law is so robust, cutting across economies
which follow different financial system, and even across time, there must be a
simple explanation for this feature. Several models have been proposed from
this viewpoint. There are attempts to use ideal-gas like models which recover
these features [8]. Models in analogy with directed polymers in random media
[9] have been proposed. Generalized Lotka-Volterra dynamics [10] and stochas-
tic evolution equation which incorporate trading as well as random changes in
prices of investments [11] have also been proposed.

Trading is an economic activity which is common to all systems in all
countries and has been so from time immemorial. Thus asset exchange mod-
els which are simplest models of economic transaction should give us an ex-
planation of Pareto law. There have been several attempts in this direction
[12, 13, 14, 15, 16]. We try to study it from the viewpoint of asset exchange
models. In literature, two types of asset exchange models have been studied
extensively. In these models, there is neither consumption nor production of
wealth. One of models is called yard-sale model (YS) and other is known as
theft-fraud (TF) Model [17]. In YS model, the amount at stake is certain frac-
tion of wealth of poorer agent while in TF model, both agents put a certain
fraction of their wealth to stake. However, none of these models reproduces
the power-law distribution of wealth. The YS model leads to condensation of
wealth in the hand of one agent asymptotically while the TF model which is
an ideal-gas like model gives us an exponential distribution of wealth. In this
context, several approaches have been attempted to reproduce power-law tail
in wealth distribution starting from asset exchange models. Sinha showed that
modified YS rule in which poorer player wins with higher probability leads to
a power-law distribution of wealth [18]. In a previous paper, we showed that
mixing the above two models leads to power-law tail in resultant wealth dis-
tribution [15]. Several other variants like introducing altruism in YS and TF
models [19], introducing saving propensity in TF type models [13, 14] etc. have
been studied.

A common and rather unrealistic feature of these models is that the rules
do not allow total wealth in a society to fluctuate, nor the number of players
in the society change in time. It is clear that change in working population
makes an impact on the wealth distribution of the country. It is also clear that
the true GDP (Gross Domestic Product) of the world has increased over time.
Thus the total wealth is not conserved. In fact, projection of real GDP growth is
obtained by summing the estimates of the percentage changes in: increased labor
inputs, increased capital inputs and productivity growth [20]. Thus it is clear
that increase in labor supply will increase the real GDP (the proportionality
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constant is elasticity of output with respect to labor). In most societies, this
number keeps growing. (Of course, there are exceptions to this rule of thumb.
In older times, catastrophic events like drought, earthquake, plague have wiped
out populations. In modern economies, even decrease in labor supply is possible.
The populations in countries like Russia, Italy, Ukraine etc. are reducing and
economists are discussing its consequences [21]. However, this is a new trend
and its outcome will be apparent only after a decade or so [22].) Labor supply
depends on demography. Kitov in has postulated that the GDP growth rate
depends on relative change in the number of people with a specific age (9 years
in the USA) [23]. Thus the linear relationship between growth of real GDP and
growth of (working) population is a reasonable assumption. We are not taking
into account the impact of decreasing labor participation ratio on economy in
this paper which is a new phenomenon. We are not taking into account the
impact of productivity or fitness of the agents or influx of new capital by agents
already in the system. We will deal with the only effect that the total wealth also
keeps increasing since increasing population discovers newer sources of income.
We will systematically analyze the impact of increase in number of agents in
the Yardsale model of asset exchange.

The wealth often splits at the higher end of the spectrum. Rich people
have descendents who become independent agents in their own right. Similarly,
large corporations split into entities which function independently. There is a
fragmentation of wealth when people have children or companies split. Apart
from the fact that large wealth is difficult to manage, there are social and
legal pressures which encourage division of wealth of rich people. The society
at large, resents concentration of wealth in hands of some people leading to
income inequalities. The government, on the other hand, wants to discourage
monopolies from the perspective of encouraging economic efficiency and puts
in measures like antitrust act, ceiling act, quotas [24, 25] etc. These measures
affect rich people more than the poor.

There are previous attempts to take into account these factors. Slanina has
given a model with nonconserved wealth but conserved number of agents. He
models the wealth distribution in analogy with inelastically scattering particles
and reports a power-law distribution with Pareto index in the interval [1,2] de-
pending on a free parameter introduced in the model [26]. There is an attempt
to take into account splitting of wealth between agents. R. Coelho et al intro-
duced the family-network model for wealth distribution in societies. Here, they
assume fragmentation of wealth of older agents among their neighbors. This
agent reappears with zero age and gets linked to two randomly selected agents
that have wealth greater than a minimal value q. The wealth q is taken away
from the wealth of that selected agents and it is redistributed in a random and
preferential manner in society. This model leads to Pareto-like power-law tail
for the upper 5% of the society. The Pareto index in this model found to be
1.8 [27]. But this model is static, and total wealth and number of agents are
conserved. Lee and Kim introduced the model with nonconserved number of
agents similar to the model of growing network . In that model, the number
of agents increases linearly with the time but the model does not consider any
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exchange of assets, i. e. flow of money between the agents. The wealth pro-
duction for any agent is due to intrinsic ability to produce wealth. This model
leads to power-law tail of the wealth distribution [28]. As we argued, given
the universality of the law, we feel that one should be able to obtain it within
the paradigm of asset exchange models. Despite its faults, we believe that YS
model is a good model of financial transactions. We make an attempt to explore
the ‘design space’ of asset exchange models, in particular that of YS model, by
introducing changes in capital and labor. Taking YS model as a basic model, we
investigate the asymptotic distribution of wealth with nonconserved of number
of agents and/or the total wealth.

We introduce three different models in this context. We investigate models
mimicking introduction of newer wealth (with newer agents), fragmentation of
wealth with newer agents coming into play and a model in which both the
processes are occurring.

2 The Model(s) and Simulations

We focus on YS model of asset exchange. In YS model, which we believe to be
basically correct description of the asset exchange, the rule is the following: the
wealth exchanged between two players is fraction of the wealth of the poorer
player. Mathematically, we define it as: if we have agents i and j have wealth
xi(t) and xj(t) at time t and are chosen to be updated. Their wealth at next
time step will be:

xi(t + 1) = xi(t) + ∆x (1)

xj(t + 1) = xj(t) − ∆x (2)

∆x = α min(xi(t), xj(t)) Where α random number in the interval [0,1]. The
wealth of all other agents does not change xk(t + 1) = xk(t) for all k different
from i and j.

As mentioned before, this model leads to the unrealistic outcome that the
entire wealth is owned by one agent asymptotically. As mentioned in the pre-
vious section, various modifications of this model do not yield a satisfactory
power-law tail either. We would like to make a change which be believe is
realistic and has not been taken into account before.

There are two processes which need to be accounted for:
a) The economic system is not closed and newer agents come in bringing in

their own money. As we stated before it is reasonable to assume that the true
GDP growth will be proportional to labor supply or number of agents.

b) The wealth often splits at the higher end of the spectrum. Rich people
have progeny who become independent agents in their own right. Similarly, large
organizations often split into daughter organizations for smoother management.
We explore variants of YS model in which richer agents keep splitting with higher
probability. In these models the number of agents is not conserved but increase
in time (which is very realistic) and see an impact of such a system in the wealth
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distribution pattern. We believe YS process where the asymptotic state is a
condensate, naturally leads to merging. We explicitly introduce fragmentation
proportional to the wealth of an agent. We also probe third situation in which
both the events of newer agents entering the market and division of wealth for
some agents keep happening.

We will study both the effects individually and also study the wealth distri-
bution when both of the above effects are introduced.

We start with a pool of N0 = 100 players that have wealth selected randomly
from uniform distribution in the interval [0,1] in all models below. We fix the
value of α = 0.5 in all cases. (We checked that changing value of α to another
constant does not change results. Changing α randomly in time, or assigning
a quenched random value of α to each agent does not change the steady state,
if any.) Probability density of wealth is approximated from a histogram with
very fine bins. We have used 105 bins of uniform size in all models below except
model B where we used 104 bins. After the simulation, we compute the relative
wealth of each agent, normalized by total wealth in the system. (Due to scale
invariance of power-laws, this linear transformation does not change the nature
or exponent of the power-law tail.) We compute probability histogram of the
relative wealth and normalize it by total number of observations as well as by
the bin-size to obtain an estimator for probability density function of the wealth
[29]. This procedure is followed in all the case below. This distribution is noted
as P (x̄).

(A) Inflow of newer agents: In this model, we have a steady flow of newer
agents entering the fray with some wealth. Thus, neither the number of agents
nor the total wealth is conserved. Let us denote the number of agents after
k rounds of transactions by Nk. After each round of transactions, the number
increases by one and thus Nk = N0+k. Each round of transactions consists of as
many transactions as the number of agents, giving each agent a chance to have a
couple of transactions on an average. After every round, a new agent enters the
system, that agent has wealth selected randomly from uniform distribution in
the interval [0,1]. Transactions take place according to YS rule by choosing two
agents randomly to make trade. We will demonstrate that this system indeed
reaches a steady state with stable asymptotic probability distribution of wealth.

We start the simulation with N0 = 100. We find the probability distribution
of wealth after T time-steps and observe that it indeed converges asymptotically.
We average over 100 initial configurations. Total wealth increases linearly with
the number of agents. However, we find that the wealth of the richest agent
occupies a fraction of total wealth which remains constant asymptotically. Thus
condensation is clearly not reached. In order to compare the distributions at
different times, we obtain the probability distribution of x̄ where x̄ is fraction
of wealth that a given agent has acquired. (Since the power-laws are scale
invariant, this transformation does not change the power-law nature of tail.)
We show the probability distribution p(x̄) after T = 104 and T = 105 time-
steps in Fig. 1. The distribution has clearly converged. We observe that this
wealth distribution has a power-law tail with exponent 1.5(5). Pareto index in
this model ν = 0.5(5). This curve has lot of fluctuations. To average them out
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we define a new variable f(x̄) =
∫
∞

x
p(x̄)dx̄ which is proportional to probability

of having wealth greater than x̄. Clearly f(x̄) ∝ (x̄)−ν and displays a power-law
tail if p(x̄) ∝ (x̄)−ν−1 for larger x̄. In the inset, we plotted f(x̄) as function of
x̄ for T = 104 and T = 105 time steps as in original figure. The figure in the
inset demonstrates that the probability distribution has indeed converged to a
steady state.

Figure 1: We plot wealth distribution function p(x̄) as a function of x̄ for model
A for T = 104 and T = 105 timesteps. We clearly see that the model has a
steady state which has a power-law tail with exponent 1.5(5). Inset: We plot
f(x̄) =

∫
∞

x̄
p(x̄)dx̄ for the same parameters as the original figure. This clearly

demonstrates that the system has reached a steady state.

(B)Fragmentation of wealth: We consider a situation in which there is no
inflow of wealth and the richer agents fragment. This is a model of closed society
where no extra wealth comes in, but population increases. Now inheritances can
play a role in which unused material possessions and assets are divided among
siblings. However, for poorer agents are unlikely to have unused assets and
material possessions which need savings that are translated into investment. It
is known that savings rate for the rich are higher than the savings rate for the
poor. One more reason why the wealth is likely to be fragmented at higher end is
managerial and economic efficiency. We also note that there are social and legal
pressures to stop some agent from grabbing all the wealth. Countries have an-
titrust law and its equivalent to stop monopolies since monopolies not only lead
to higher income inequality but they also lead to economic inefficiency. There
are land ceiling laws in several countries which essentially encourage agents to
fragment their assets when they are too rich. We incorporate this in our model
by saying that rich people divide their wealth with higher probability than the
poor. After every τ time steps, we pick an agent randomly and with a proba-
bility that is proportional to his wealth, we introduce two agents each with half
wealth and remove this agent from the pool. (We have checked that change in
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the value of τ does not change the asymptotic distribution of wealth.) In other
words, if we choose an agent (say k th) randomly, we split his wealth with prob-
ability xk(t). We reduce wealth of k’th agent to half and introduce the (N +1)th
agent with same wealth (we checked that unequal partitions do not affect our
results.) In this model, the number of agents keeps increasing while total wealth
is conserved. Thus, the average wealth reduces. The probability of fragmen-
tation of wealth of agent is related to absolute value of his wealth. However,
richer agents keep getting disproportionately targeted for fragmentation. Thus
the entire distribution slowly tends to a delta function at x = 0 asymptotically
with a power law tail which has decreasing weight as time grows. However,
we may look for a quasistationary distribution similar to Slanina model [26]
in which there is no conserved average wealth but a quasistationary state with
a power law tail. The tail always shows a power-law behavior with exponent
2.8(0).

We carry out simulation with N0 = 100 agents for M timesteps and aver-
age over 3000 initial conditions. After every τ = 10 timesteps, we attempt a
fragmentation of randomly chosen agent as mentioned above. The distribution
clearly displays a clear power-law tail at any time. For consistency, we have
displayed distribution of normalized wealth x̄ though the total wealth remains
constant. (The probability distribution of x will not be any different except a
scale factor.) We show the wealth distribution after 104, 105 and 106 time-steps
in Fig. 2. It is clear that the distribution has a power-law tail with the exponent
2.8(0). This exponent does not change in time. We will support this conclusion
by a scaling argument.

Figure 2: We plotted wealth distribution p(x̄) as function of x̄ for model B for
104, 105 and 106 timesteps. We get power-law tail with exponent 2.8(0).

The presence of quasistationary state can be demonstrated by the fact that
the distribution admits an interesting scaling behavior. In Fig. 3, we plot
the p(x̄, t)x̄−α as a function of x̄αt for different times. The functional forms
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Figure 3: The scaling plots of the wealth distribution obtained from numerical
simulation of model B. The data for three different times collapse onto a single
curve.

at different times collapse to single curve and the scaling function is p(x̄, t) ∼

x̄αf(x̄αt) where α = 2 + ν and ν the Pareto index in this model.
The exponent 2.8(0) is certainly more realistic and comparable with expo-

nents obtained in empirical studies. The Pareto index is ν = 1.8(0) in this
model.

(C)Fragmentation and inflow of agents: This is a model where both the
processes described in model A as well as B happen. The society is open. Newer
agents keep coming in with new sources of wealth and richer agents keep getting
fragmented. Here, neither total wealth nor number of agents is conserved. There
are several ways in which this could be achieved. We have tried three different
cases:

Case I) In this case, we couple fragmentation of any agent with addition of
new agent with random wealth chosen from uniform distribution over [0,1]. We
do this to keep average wealth constant asymptotically. Thus every time an
agent fragments, we have two new agents (one each due to fragmentation and
addition) and on an average wealth of value 1/2 is introduced in the system
when two new agents are created. (This is due to the fact that in our models,
any agent has initial wealth chosen from uniform random distribution over [0,1].
We do not give any extra wealth to the agent created due to fragmentation.)
Thus average wealth which is the first moment of distribution of wealth will
be reaching a constant 1/4 asymptotically. We have checked that changing α
and making fractions unequal do not change results. We start simulation this
model with N0 = 100 agents. After carrying out as many YS transactions as
the number of agents in the system, we randomly select an agent as the model
B. We fragment it with probability proportional to his wealth. Now, we add the
new agent with wealth chosen randomly from interval [0, 1] if and only if the

8



fragmentation has occurred. We averaged over 100 initial conditions. In Fig. 4,
we have shown the probability distribution of fractional values of wealth p(x̄)
after T = 104 and T = 105 timesteps. It is clear that system indeed reaches a
stationary state with power-law tail. The power-law displayed has an exponent
1.7(7). Pareto index in this model ν = 0.7(7). As the model A, we plotted
f(x̄) as function of x̄ for T = 104 and T = 105 time steps as in original figure.
The figure in the inset demonstrates that the probability distribution has indeed
converged to a steady state.

Case II) Here we add a new agent (with probability one) after every round
of transactions, i.e. after as many transactions as the number of agents in the
system. This is very much like Model A. Additionally, we also choose an agent
randomly after every round of transactions and fragment it with probability
proportional to his wealth. In this case, the new agent with his own wealth
enters the system at least as frequently as the event of fragmentation of the
older agent (which has very little probability). Thus we expect a steady state
where the total wealth increases linearly with number of agents. Again, in
order to be able to compare distributions of wealth at different times, we obtain
the probability distribution p(x̄) where x̄ is normalized value of wealth. The
figures clearly demonstrate a steady state. We have checked also that changing
α and making fractions unequal do not change results. We start simulation with
N0 = 100 and average over 100 configurations. In Fig. 5, we demonstrate the
probability distribution after T = 104 and after T = 105 timesteps. This model
clearly leads to a distribution with power-law tail with exponent 1.9(0). Pareto
index in this case ν = 0.9(0). As the model A, we plotted f(x̄) as function of
x̄ for T = 104 and T = 105 time steps as in original figure as an additional
evidence for the approach to a steady state.

Case III) We have also tried another possibility where no particular mea-
sures are adopted to make average asymptotic wealth constant. It is unrealistic
to assume that new agent enters the fray only after exactly N transactions are
completed. However, it is reasonable to assume that number of transactions
would be proportional to number of agents. Hence, we make a probabilistic
rule that new agent joins with a probability inversely proportional to number
of agents in the system at that time. Thus we allow one agent to join with
probability 1/N after every τ timesteps where N is number of agents at that
time. We also attempt to fragment a randomly agent chosen with probability
proportional to his wealth after every τ timesteps. Though total wealth keeps
increasing with number of new agents joining, it is not necessary that the in-
crease will be linearly proportional to total number of agents. However, our
simulations indicate that total number of agents and total wealth keep increas-
ing linearly with time. Thus fractional wealth x̄ is a good variable to analyze.
We start with N0 = 100 agents. After every τ = 10 timesteps we choose an
agent randomly and fragment it with probability proportional to his wealth
while a new agent joins with a probability inversely proportional to total num-
ber of agents in the system. (We have checked that changing τ does not alter
the results.) Here the system does not reach saturation during our simulation
time. However, we observe that the distribution has a power-law tail. We have
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plotted the wealth distribution p(x̄) after T = 106 timesteps. It clearly has a
power-law tail with exponent 2.2(2) (See Fig. 6). After the power-law, there is
a small peak in the distribution at very large masses as in case of some particle
aggregation models [30]. We average over 100 configuration. Pareto index in
this model ν = 1.2(2) at T = 106 time steps. Though the steady state is not
very clear in this situation, the exponent does not change much at later times.
The exponent is high and is comparable to realistic societies.

Figure 4: We plot wealth distribution p(x̄) as a function of x̄ for model C case
I for T = 104 and T = 105 timesteps. We clearly see that the model has a
steady state which has a power-law tail with exponent 1.7(7). Inset: We plot
f(x̄) =

∫
∞

x̄
p(x̄)dx̄ for the same parameters as the original figure. This clearly

demonstrates that the system has a steady state.

We have checked that the power-law is a better visual fit than lognormal for
all the cases discussed above. Besides, we have checked the goodness of fit by
finding χ2/DoF and R2 for three models by fitting it a power-law functional
form and lognormal fit. The values are given in Table 1. It is clear that R2

values are higher and very close to unity for power-law fit demonstrating that
this model is relevant for higher fraction of data. The χ2/DoF values are lower
by orders of magnitude for a power-law fit, which shows that error is far smaller
for this fit in all the cases.
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Figure 5: We plot wealth distribution p(x̄) as a function of x for model C case
II for T = 104 and T = 105 timesteps. We clearly see that the model has a
steady state which has a power-law tail with exponent 1.9(0). Inset: We plot
f(x̄) =

∫
∞

x̄
p(x̄)dx̄ for the same parameters as the original figure. This clearly

demonstrates that the system has a steady state.

Figure 6: Wealth distribution p(x̄) as function of x̄ for model C case III for
T = 106 timesteps. We get power-law distribution with exponent 2.2(2) at this
time though there is no clear steady state.
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Table 1: Comparison of Power-law and Lognormal Fits.
Model Fit χ2/Dof R2

Model A Lognormal 5.56 ×102 0.92
Power-law 1.7 ×10−1 0.999

Model B Lognormal 5 ×10−9 0.04
Power-law 3.5 ×10−13 0.999

Model C case I) Lognormal 1.0 ×105 3.6 ×10−6

Power-law 4.8 ×10−1 0.999
Model C case II) Lognormal 1.2 ×106 2.8×10−7

Power-law 1.87 0.999
Model C case III) Lognormal 2 ×104 0.17

Power-law 6.0 ×10−2 0.998

3 Results and discussion

We studied three modifications of the YS model. In all three models, we observe
power-law tails in wealth distribution with different exponents. In the first
model, we consider an open system, where one new agent decide to join to the
system with his wealth after each round of transaction. With this modification
of YS, we prevent the condensation of wealth that occurs in the pure YS system
and find the power-law wealth distribution with Pareto index ν = 0.5(5). This
index is smaller than ones observed in reality.

In the second model, we prevent the condensation of wealth by allowing the
richest agents to fragment into two new agents each. This model was inspired
from a similar model trying to give quantitative explanation of power-law tail in
the distribution of number of casualties in terrorist attacks observed in empirical
data in several countries. This model incorporates fragmentation and merging
of terrorist groups. It assumes that, there are a specific number of attack units.
(Group of people, weapons, explosives, machines, or even information, which
organizes itself to act is a single unit.) Each attack unit has an attack strength.
At each time step, one attack unit is chosen with probability which proportional
to its strength. This unit chooses to fragment into smaller groups with some
probability q and coalesces with another attack unit (again chosen with proba-
bility proportional to its strength) with probability 1 − q. This model exhibits
stationary state with power-law distribution for the strength of attack units.
The exponent is 2.5 [31], (i. e. Pareto index 1.5). We believe that merging
occurs naturally in YS model. We introduced the idea of fragmentation pro-
portional to the wealth of an agent in our model B which gave us a power-law
wealth distribution with Pareto index ν = 1.8(0). This value is comparable to
ones observed in realistic societies. This model does not have a steady state.
But the fact that it admits an interesting scaling behavior, shows the presence
of a quasistationary state.

We have also studied a third model which incorporates both ingredients of
bringing in newer wealth and fragmentation of richer agents. These are very
realistic features of societies. In this model, we always carry out fragmentation
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of some randomly chosen agent with probability proportional to its wealth.
Here we studied three cases. In the first case, we coupled the fragmentation of
any agent with addition of new agent having random wealth. This leads to a
distribution with Pareto exponent 0.7(7). In the second case, after every round
of transactions, you add an agent and also attempt fragmentation. This leads
to Pareto exponent 0.9(0). In the third case, we add an agent with probability
inversely proportional to number of agents and also try fragmenting a randomly
chosen agent. This leads to distribution with Pareto exponent 1.2(2). Except
this case, we have demonstrated that a stationary or quasistationary state is
reached asymptotically. We would like to mention that the models are robust
with respect to change in parameters τ and α and results do not depend on the
precise values of these parameters.

Similar models have been studied in nonequilibrium statistical physics in the
context of aggregation models. Takayasu has studied a system in which particles
are injected at a steady rate, they diffuse and try to form an aggregate. [32]
Asymptotic state here is known to have a power-law tail. There are also models
in which particles chip off from aggregates. (For a survey of these different
models, see [30] ) In our model, the wealth is not discrete, and YS process is
similar to but not the same as coagulation of particles. However, some analytic
insights could be gained from the analysis of particle aggregation models and
studies are being carried in this direction.

MAS thanks Govt. of Yemen for financial support and PMG thanks S. Sinha
for discussions.
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[5] G. Hegyi, Z. Néda and M. A. Santos, Physica A 380 (2007) 271.

[6] A. Y. Abul-Magd, Phys. Rev. E 66 (2002) 057104.

[7] A. Dragulescu and V. M. Yakovenko, Physica A 299 (2001) 213.

[8] A. Dragulescu and V. M. Yakovenko, Eur. Phys. J. B 20 (2001) 585 .

[9] M. Marsili, S. Maslov and Y. -C. Zhang, Physica A 253 (1998) 403.

[10] S. Solomon and P. Richmond, Physica A 299 (2001) 188 .

[11] J. -P. Bouchaud and M. Mezard, Physica A 282 (2000) 536 .

13



[12] S. Ispolatov, P. L. Krapivsky and S. Render, Eur. Phys. J. B 2 (1998) 267.

[13] A. Chakraborti and B. K. Chakrabarti, Eur. Phys. J. B 17 (2000) 167.

[14] A. Chatterjee, B. K. Chakrabarti and S. S. Manna, Physica A 335 (2004)
155 .

[15] M. A. Saif and P. M. Gade, Physica A 384 (2007) 448.

[16] Econophysics of Wealth Distribution, ed. A. Chatterjee, S. Yarlagadda and
B. K. Chakrabarti (Springer, Milan, 2005).

[17] B. Hayes, American Scientist 90 (2002) 400.

[18] S. Sinha, Phys. Scr. T 106 (2003) 59.

[19] M. Rodrguez-Achach and R. Huerta-Quintanilla Physica A 361 (2006) 309.

[20] Economics: Principles and Policy, W. J. Baumol and A. S. Blinder (Thom-
son South-Western, 2005), Macroeconomics, A. B. Abel and B. S. Bernanke
(Pearson Custom Publishing, 2005) (see also [22].)

[21] The Future of Europe: Reform Or Decline, A. Alesina, F. Giavazzi (MIT
Press, 2006).

[22] In other contexts, the consequences of decreased labor partic-
ipation have been discussed. See for example ’ As Boomers
Slow Down, So Might the Economy’ in Regional Economist
http://www.stls.frb.org/publications/re/2007/c/pages/baby-
boomers.html.

[23] http://inflationusa.blogspot.com/2007/10/gdp-growth-rate-and-
population.html.

[24] Economics, J. E. Stiglitz, (W. W. Norton and Company Limited, 1993),
Antitrust, H. Hovenkamp ( West Group, 2005).

[25] India’s Silent Revolution: The Rise of the Lower Castes in North India, C.
Jaffrelot (Columbia University Press, 2003).

[26] F. Slanina, Phys. Rev. E 69 (2004) 046102.
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