Finding square-root using Newton-Raphson's method

B. W. Gore

December 22, 2012

This note shows how to find square-root using Newton-Raphson's method. Let R be the required number and let x be its square-root. Then,

$$x = \sqrt{R} \Rightarrow x^2 = R \Rightarrow x^2 - R = 0$$

$$\therefore f(x) \equiv x^2 - R = 0 \Rightarrow f'(x) = 2x$$

From Newton-Raphson's method we have:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

$$= x_i - \frac{x_i^2 - R}{2x_i}$$

$$= \frac{2x_i^2 - x_i^2 + R}{2x_i}$$

$$= \frac{1}{2} \left[x_i + \frac{R}{x_i} \right]$$

We can start the iteration with $X_0 = R/2$ and proceed. A sample output of the iterations looks like this:

Enter the number to find sqrt: 210.25

- 0 105.125000
- 1 53.562500

```
2 28.743910
```

sqrt(210.250000) = 14.500000

^{3 18.029252}

^{4 14.845428}

^{5 14.504019}

^{6 14.500001}

^{7 14.500000}