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Abstract

Compressed Sensing, also known as Compressive Sampling, is a novel framework that exploits
the sparsity of a signal in some known basis. Recent theoretical proofs show that if a signal
is sparse in a known basis then it is possible to reconstruct it via a small number of measure-
ments. Furthermore, the signal can be accurately reconstructed using efficient algorithms. In
this project we apply this technique in the Image reconstruction problem of Radio astronomy
which is hampered by poor sampling and noisy Fourier measurements on aperture plane. The
theory of Compressed Sensing demonstrates that such measurements may actually suffice for
accurate reconstruction. Also, Compressed Sensings algorithms offers significant improvement
over mainstream deconvolution algorithms used in radio interferometry such as CLEAN and
MEM.
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Chapter 1

Introduction

1.1 Compressed Sensing

Real world signals can be viewed as multidimensional vector and we know that image can be
represented as a matrix with pixel entries as each element. It can also be viewed as multidimen-
sional vector just by stacking the columns of the image matrix one after the other. In signal
processing we measure samples of the signal in order to reconstruct the original signal. For
reconstruction of such signals we consider linear measurement model

Ax = b (1.1)

where, A is the known measurement matrix of order M ×N
M is the number of rows or number of features
N is the number of columns or number of unknowns
b is the M × 1 known vector called measurement vector.

Each element of b vector is a measurement.
x is the N × 1 unknown vector which we want to reconstruct.

This is our classical linear algebra problem which has three cases.

• M = N then A is a square matrix and if A is non-singular then the system of equations
has a unique solution.

• M > N Amatrix is a rectangular matrix with the number of rows (or number of equations)
is greater than number of unknowns. Such systems are called Overdetermined systems
and have no solution. Least Square method is one of the method for arriving at an
approximate solution.

• M < N then A matrix is a rectangular matrix with the number of rows smaller than the
number of columns. Then, the system of equation is called as Under determined system
and has a whole subspace of solution.

Suppose we have far fewer measurements than the number of features or unknowns i.e. M <<
N . Compressed Sensing can then provide a solution if we know that the signal is sparse ([10]).

1.1.1 Sparsity

With the success of image processing, where great advances in compression and estimation
have come from modeling images as sparse in a wavelet domain (JPEG 2000 standard), modeling
signals in a sparse basis has become a key area in signal processing. To illustrate this consider

13



14 CHAPTER 1. INTRODUCTION

an N dimensional vector y that can represented as Ψx, where Ψ is a N ×N orthogonal matrix
aka Basis Matrix and x ∈ RN has k non-zero entries. In this case we say that x is k-sparse or
x is a k-sparse representation of y with respect to Ψ. The ratio α = k/N is called sparsity ratio
of vector x.

Sparsity is the fundamental criterion for compressed sensing to work. Most signals (or images)
are sparse when represented in certain sparsifying bases. An advantage in knowing the sparse
representation of a signal is that the degree of freedom of signal the signal is reduced by a
significant amount which leads to compression. Compression gain is higher when sparsity ratio
is smaller.

Another important property of sparse signals is that it can be recovered in far less number
of measurements then it would be otherwise. This technique is called as Compressed Sensing
or Compressive sampling was developed by [7], [8], [10] .

The sampling of y is represented as a linear transformation by a matrix Φ yielding a mea-
surement vector b = Φy.

Figure 1.1: b = Φy

Φ is M × N matrix where M << N .Now suppose we have y = Ψx where x is a k-sparse
representation of y and Ψ is the basis matrix.
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Figure 1.2: y = Ψx

The complete idea of compressed sensing is shown in following figure.

In figure 1.1.1 equation b = ΦΨx is in Ax = b form with A = ΦΨ. Since x is k-sparse, x
must be in one of the C(n, k) subspaces of RN . So if we have m > k+ 1 then exhaustive search
can be done through these subspaces and we can determine which subspace y belongs to. This
can be formulated as an optimization problem

minimize ‖ x ‖`0 subjected to Ax = b (1.2)

where `0 is the quasi-norm and is defined as

‖ x ‖`0=

i=n∑
i=1

I(xi 6= 0) (1.3)

where I is an indicator function defined as

I(x) =

{
1 x 6= 0
0 x = 0

(1.4)

But performing this exhaustive search over all subspaces is computationally intractable as N
increases (keeping α constant). One way of circumventing this problem is by using the `2 norm
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as a proxy, which is equivalent to solving the following optimization problem.

minimize ‖ x ‖`2 subjected to Ax = b (1.5)

Solving the above equation leads to a solution for Ax = b but it only guarantees x to be
small in the `2 norm sense. In other words it does not help in reducing the number of non-zero
components in the solution vector x which is our prime aim.

Hence, minimizing the `0-norm is computationally intractable and `2-norm does not lead to
sparse solutions. A novel way of getting a sparse solution is by minimizing the `1-norm subjected
to Ax = b.

minimize ‖ x ‖`1 subjected to Ax = b (1.6)

Solving this optimization problem leads to a sparse solution. It also guarantees the uniqueness
in solution as proved in .

1.1.2 `1 vs `2

One way of visualizing why `1 leads to sparse solution and `2 does not is shown in the following
figure.

Figure 1.3: `1 vs `2 ball

Figure (1.3) shows the `1 ball and `2 ball touching the contours of ‖ Ax− b ‖2`2 . This clearly
shows that due to the sharper corners of the `1 ball, contours of ‖ Ax− b ‖2`2 touch the `1 ball
at one of the axes, which is a sparse solution. However the `2 ball is spherical and does not
leads to a sparse solution.
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In general any p-norm is defined as

‖ x ‖p= (|x1|p + |x2|p + |x3|p + ...|xN |p)
1
p (1.7)

Further, an equivalent problem of minimizing the p-norm of x is

minimize(|x1|p + |x2|p + |x3|p + ...|xN |p) (1.8)

Let us compare the minimization of the `1 norm and the `2 norm. For the `2 norm min-
imization, we care very little when xi < 1 as compared to `1 minimization because `2 norm
deteriorates the smaller components more rapidly as compared to`1 norm. On the other hand
during `2 minimization we have a strong dislike when if xi > 1. Hence, during minimization
`2 puts strong weights on larger components and a small weight (or zero weight) on smaller
components of x as compared to the `1 norm. So `1 norm minimization places a larger emphasis
on minimizing the smaller components which in turn makes most of the components zero or
approximately zero. This simple interpretation gives a clearer insight into why a solution of
equation (1.6) leads to sparse result.

1.1.3 Theorems for Compressed Sensing

Restricted Isometry Property (RIP) or Uniform Uncertainty Principle (UUP)

UUP stands for Uniform Uncertainty Principle ([6], [5]). Matrices which follow these principle
are called ”UUP matrices”. UUP matrices can compress vectors from high-dimensional space
to low-dimensional space while still being able to reconstruct these vectors.

In general, a M × N rectangular matrix A is called orthogonal only if M ≥ N and each
column vector are orthonormal i.e. they all have unit length and are orthogonal to each other.
Let v1, v2...vN be the ’N ’ columns of A matrix. Then

v∗i vj = 0 where i 6= j and i, j is from 1...N (1.9)

‖ vi ‖`2= 1 where i is from 1...N (1.10)

So this A matrix can transform an N -dimensional vector a = (a1, a2...aN ) to corresponding

M dimensional vector, which is

j=N∑
j=1

ajvj . Now if this A matrix is orthogonal, we know that

norm of vectors are not changed when they are linearly transformed by an orthogonal matrix.
So for above situation, we have

‖
j=N∑
j=1

ajvj ‖2`2=

j=N∑
j=1

|aj |2 (1.11)

This implies that (a1, a2, ...aN ) 7→
j=N∑
j=1

ajvj is an isometry i.e. given the encoded vector

z =

j=N∑
j=1

ajvj one can uniquely recover the original coefficients (a1, a2...aN ). Furthermore, small
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changes in z will not cause large fluctuations in (a1, a2...an). Indeed, one can reconstruct the
original coefficients quickly and explicitly by the formula

aj =< z, vj > (1.12)

But in the Compressed Sensing setting we cannot apply this property directly as we have
M << N . In other words we cannot express a vector of say in ’t’ dimension with a basis vectors
set of cardinality greater than t. So for our case

a1v1 + a2v2 + ...+ anvN = 0 (1.13)

If we can try to overcome the above restriction by weakening equation (1.11) for all (a1, a2, ...an)
by

(1− δ1)
j=n∑
j=1

|aj |2 ≤ ‖
j=n∑
j=1

ajvj ‖2`2 ≤ (1 + δ2)

j=n∑
j=1

|aj |2 (1.14)

where δ1, δ2 are constants such that 0 < δ1δ2 < 1. The above condition is as good as saying
columns of the matrix are locally orthogonal rather than globally perfectly orthogonal. Due to
this property which is also called as Restricted Isometry Property ([6, 5]), it turns out that one
can pack more thanM vectors intoM dimensional space if one localizes the almost orthogonality
condition so that it only holds for sparse sets of coefficients (a1, a2, ...aN ). Sparsity parameter k
(less than M) plays an important role here. If we say that our sensing matrix A obeys the UUP
with sparsity k then one has the almost orthogonality condition (1.14) for any set of coefficients
(a1, a2, ...aN ), such that at most k of the aj are non-zero. In other words, we only assume that
any k of the N vectors v1, v2, ...vN are almost orthogonal at one time.

Furthermore, constructing UUP matrices is an NP hard problem. In other words there is no
polynomial time algorithm known which can construct these UUP matrices. The best possible
methods are the one which could simply search through all matrices in a given class and test
each one of them for the UUP property. But this is an exponential-time algorithm. However it
has also seen that some matrices like random normalized Gaussian matrices, random normalized
Bernoulli matrices are UUP matrices. But they are all probabilistic in nature; in particular,
these constructions are not 100% guaranteed to actually produce a UUP matrix, although in
many cases the failure rate can be proven to be exponentially small in the size of the matrix.
So for many larger scale applications it is actually exponentially less prone to failure.

Definition. UUP matrices are the generalization of (rectangular) orthogonal matrices in which
columns are locally almost orthogonal rather than globally perfectly orthogonal.

Incoherence

In Compressed Sensing we are dealing with two matrices Φ (sensing Matrix) and Ψ (Basis
matrix which is used to represent y in sparse basis). Coherence between the sensing basis and
Basis matrix defined as

µ(Φ,Ψ) =
√
Nmax1≤k,j≤N | < Ψk,Φj > | (1.15)

In simple words, coherence(µ) measures the largest correlation between two elements of Φ
and Ψ. If Φ and Ψ contain correlated elements, then the coherence is large. Compressed
Sensing is mainly concerned with low coherence pairs i.e. we require low values of µ. Classical
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example of incoherent basis pairs are the Fourier basis and Euclidean basis. These basis pairs
are maximally incoherent with incoherence µ = 1. Another example is pair of wavelets bases
(Ψ) and noiselets (Φ). The coherence between noiselets and Haar wavelets is

√
2 and between

noiselets and Daubechies D4 and D8 wavelets, respectively, about 2.2 and 2.9. Noiselets are
also maximally incoherent with euclidean basis and Fourier basis.

Finally, random matrices are largely incoherent with any fixed basis Ψ. We select an or-
thobasis Ψ uniformly at random, which can be done by orthonormalizing N vectors sampled
independently and uniformly on the unit sphere. Then with high probability, the coherence
between Ψ (Basis Matrix) and Φ (Sensing basis matrix) is '

√
2logN . Random Gaussian i.i.d

matrices also show very low coherence with fixed representation basis matrix Ψ.

THEOREM ([5]) 1. Suppose y ∈ RN is sparse in some Ψ basis and x ∈ RN is k-sparse
representation of y. Now we select M measurements in Φ uniformly at random. Then if

M ≥ Cµ2(Φ,Ψ)klogN (1.16)

for some constant C the solution 1.6 is exact with overwhelming probability.

The role of coherence is now clear; the smaller the coherence, the fewer samples are needed,
hence compressed sensing require low coherence pairs of basis matrices. One suffers no infor-
mation loss by measuring just about any set of M coefficients which may be far less what the
signal size apparently demands. If µ(Φ,Ψ) is equal or close to one, then of the order of klogN
samples suffice instead of N .

1.1.4 Applications

The fact that sparse signals can be reconstructed efficiently using very few number of incoherent
samples which is proportional to sparsity (k) has far reaching implications and applications. The
main areas where compressed sensing had proven itself as a more advantageous and efficient
technique are

• Data compression. In some situations, the sparse basis Ψ may be unknown at the encoder
or impractical to implement for data compression. However a randomly designed Φ can
be considered a universal encoding strategy, as it need not be designed with regards to
the structure of Ψ. This universality may be particularly helpful for distributed source
coding in multi-signal settings such as sensor networks ([1]).

• Channel coding. Compressed Sensing principles can be turned around and applied to
design fast error correcting codes over the reals to protect from errors during transmission
([6]).

• Inverse problems. The only way to acquire x may be to use a measurement system
Φ of a certain modality. However, assuming a sparse basis Ψ exists for x that is also
incoherent with Φ, then efficient sensing will be possible. One such application involves
MR angiography and other types of MR setups, where Φ records a subset of the Fourier
transform, and the desired image x is sparse in the time or wavelet domains ([14]).

• Data acquisition. Finally, in some important situations the full collection of N discrete-
time samples of an analog signal may be difficult to obtain (and possibly difficult to
subsequently compress). Here, it could be helpful to design physical sampling devices
that directly record discrete, low-rate incoherent measurements of the incident analog
signal.
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1.2 Radio Interferometry

1.2.1 Radio Telescopes and its Resolution

Angular resolution (θ) of a telescope depends on the wavelength of light or radio waves (λ)
and the diameter (D) of the telescope being used. The relation between θ, λ and D is given by

θ ∼ λ/D (1.17)

Here θ is in radians and λ and D in meters.

Radio telescopes are used to study radio waves emitted by astronomical objects of wavelengths
roughly between about 10 meters and 1 millimeter. It is possible to observe radio waves from
the ground as shown in the figure 1.4, spacecraft are needed to observe astronomical objects in
gamma rays, X-rays, UV, and IR, while ground observations are possible in the visible, some
parts of the near IR, and the radio.

Figure 1.4: Image credit : NASA/IPAC

Due to larger operating wavelengths and primarily because of relation equation (1.17), radio
telescopes have to be much larger than optical telescopes to attain good angular resolution.
Angular resolution is a measure of how small detail of an area in the sky can be seen. The
larger the telescope, the more detail can be observed in a given wavelength.

1.2.2 Radio Interferometry

Angular resolution of telescope given by equation (1.17) is limited by its operating wavelength
and diameter of aperture. To get good resolution, one has to either decrease the operating wave-
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length or increase the size of telescope. In radio astronomy, the wavelengths are so large that
even though the sizes of radio telescopes are large, the angular resolution is poor as compared
to optical instruments. With these larger telescopes one can achieve higher resolutions by op-
erating wavelengths in the centimeter to millimeter range. Telescopes of hundreds of meters in
diameter are needed to observe the source at metre wavelengths which would clearly impractical.

Radio astronomers achieve higher resolution at metre wavelengths using a technique called
Radio Interferometry. The interferometers like GMRT ([17]) consist of array of antennas located
on ground and resolution of such a telescope is proportional to maximum projected distance be-
tween the antennas. The separations between antennas are called as Baseline and are measured
in units of wavelength (λ).

Van Cittert –Zernike theorem

Van Cittert –Zernike theorem is the key theorem in radio interferometric imaging. It re-
lates the spatial coherence function at two points on the ground also called Visibility function
(V (r1, r2)) with the distribution of source intensity I. It also shows that the visibility function
V (r1, r2) depends only on the relative distances between two points i.e r1 − r2

As explained in [16]. Let us consider a two element interferometer with antenna 1 and antenna
2 located on ground at P1(x1, y1, z1) and P2(x2, y2, z2) respectively. Consider an infinitesimal
element of the source positioned at P (x, y, z) in the sky shown in figure (). If electric field
intensity at the point P is given by ε(P ), then the electric field at the observation point P1 [3]
is given by

E(P1) =

∫
ε(P )

e−
2π
λ
D(P1,P )

D(P1, P )
dΩ (1.18)

where D(P1, P ) is defined as the distance between the points P and P1. Ω is the solid angle
subtend by the infinitesimal source at P .Assuming that the emission from the source is spatially
incoherent, at point P2 the electric field is given by

E(P2) =

∫
ε(P )

e−
2π
λ
D(P2,P )

D(P2, P )
dΩ (1.19)

The spatial coherence function is given by

< E(P1)E
∗(P2) >=

∫
< ε(P )ε∗(P ) >

e−
2π
λ
(D(P2,P )−D(P2,P ))

D(P1, P )D(P2, P )
dΩ (1.20)

where Intensity(I) of the source is defined as

I(P ) =< ε(P )ε∗(P ) > (1.21)

If we imagine a celestial sphere of radius R and approximate the source lying on this sphere
then we have x = Rcos(θx) y = Rcos(θy) and z = Rcos(θz) where cos(θx), cos(θy), cos(θz) are
direction cosine l,m, n. Also l2 +m2 + n2 = 1 and the solid angle Ω = dldm√

1−l2−m2
. Further
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D(P1, P ) = [(x− x1)2 + (y − y1)2 + (z − z1)2]
1
2

= [(Rl − x1)2 + (Rm− y1)2 + (Rn− z1)2]
1
2

= R[(l − x1/R)2 + (m− y1/R)2 + (n− z1/R)2]
1
2

' R[(l2 +m2 + n2)− 2/R(lx1 +my1 + nz1)]
1
2

' R− (lx1 +my1 + nz1)
Similarly we have

D(P2, P ) = R− (lx2 +my2 +
√

1− l2 −m2z2) (1.22)

Using above equations we can approximate D(P1, P )D(P2, P ) as R2 as shown below

D(P1, P )D(P2, P ) = {R− (lx1 +my1 + nz1)}{R− (lx2 +my2 + nz2)}
= R(R− (l(x1 + x2) +m(y1 + y2) + z(z1 + z2))

+(lx2 +my2 + nz2)(lx1 +my1 + nz1)

In above equation R− (l(x1 + x2) +m(y1 + y2) + z(z1 + z2) ' R and further
R2 >> (lx2 +my2 + nz2)(lx1 +my1 + nz1). Hence we have

D(P1, P )D(P2, P ) ' R2 (1.23)

Putting the above equations (1.21),(1.23) in equation (1.20) we have

< E(P1)E
∗(P2) >=

1

R2

∫
I(P )e−

2π
λ
(l(x2−x1)+m(y2−y1)+n(z2−z1)) dldm√

1− l2 −m2
(1.24)

Above equation () is the full Van Cittert-Zernike equation. It can be seen from above
equation spatial coherence function or visibility function V (r1, r2) =< E(P1)E

∗(P2) > depends
upon r1− r2. We define baseline co-ordinates u, v, w such that u = (x2−x1)/λ, v = (y2− y1)/λ
and w = (z2−z1)/λ and also since we have relation l2+m2+n2 = 1 the above equation reduced
to

V (u, v, w) =
1

R2

∫
I(l,m)e−

2π
λ
(lu+mv+(

√
1−l2−m2)w) dldm√

1− l2 −m2
(1.25)

Two-Dimensional Approximation

Equation (1.25) under certain assumption can be approximated as two-dimensional Fourier
transform of the source intensity distribution. If we confined our observation to u− v plane i.e
when w = 0 then we have

V (u, v) =
1

R2

∫
I(l,m)e−

2π
λ
(ul+vm) dldm√

1− l2 −m2
(1.26)

Another approximation to above equation is when we consider that the source brightness dis-
tribution is limited only to small region of sky. In this case n =

√
1− l2 −m2 ' 1. Then the

equation (1.25) becomes

V (u, v) =
1

R2

∫
I(l,m)e−

2π
λ
(ul+vm)dldm (1.27)

Source brightness is described in lm plane while the equivalent conjugate variables in Fourier
space u, v is described in uv plane.u, v is interpreted as spatial frequency and Visibility function
V (u, v) as spatial frequency spectrum of source brightness distribution.
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1.2.3 Dirty Beam and Dirty Image

Fourier transform relation exists between source brightness I and the visibility V we can take
an inverse Fourier transform which can be given by

I(l,m) =

∫ +∞

−∞

∫ +∞

−∞
V (u, v)e2πi(ul+vm)dudv (1.28)

Since it is impractical to cover whole uv plane, we measure visibilities only at some points. Due
to which image of sky is not the true image but comes with lot of noise such an image is called
Dirty Image is given by

ID(l,m) =

∫ +∞

−∞

∫ +∞

−∞
S(u, v)V (u, v)e2πi(ul+vm)dudv (1.29)

where V (u, v) is observed visibility and S(u, v) denote sampling function which is indicator of
where on u− v plane visibilities are measured. It is given by

S(u, v) = δ(u− uk, v − vk) (1.30)

Hence practically we measure sampled Visibility function (V S(u, v)) which is given by

V S(u, v) = δ(u− uk, v − vk)V (uk, vk) (1.31)

where (uk, vk) are the co-ordinates of points where visibility is measured. Hence the discretized
form of visibility function with discretized l−m grid with reference to equation (1.27) is given
by

V (uj , vj) =

k=N∑
k=1

I(lk,mk)e
2πi(uj lk+vjmk) (1.32)

Note above equation denotes only one visibility at (uj , vj).
In short we have V S = SV . If F denote Fourier operator then equation (1.29) can be written
as,

ID = FV S = F (SV ) (1.33)

By Convolution theorem ([4]),
ID = FS ∗ FV (1.34)

For a point source of unit strength at (l0,m0), |V (u, v) = 1|
FV = δ(l − l0,m−m0)
ID = FS ∗ FV = FS ∗ δ = FS.
This is called the Dirty Beam which is given by

B = FS (1.35)

Hence putting equation (1.35) in equation (1.34). Dirty Image is defined as the convolution of
dirty beam and true image (FV ).

ID = B ∗ FV (1.36)

1.2.4 Deconvolution

The deconvolution problem in equation (1.36) corrects for the u − v plane sampling effect.
The lack of measurement at certain interferometric spacing means that in principle an infinite
number of brightness distributions could be consistent with our visibility data. On the other
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hand, we may incorporate additional information to constrain our solutions. The most widely
used deconvolution method are CLEAN ([12]) and Maximum Entropy Minimization

CLEAN Algorithm

CLEAN algorithm consider sky as containing only isolated point sources and approximates an
image by a collection of point sources. It then deconvolve each point source using a simple
iterative approach. The final deconvolved image which is also called CLEAN image is the sum
of these CLEAN components convolved with a Gaussian beam. This algorithm was published
by [12] in 1974 and several variations have been proposed since then. Following are the main
steps of the CLEAN algorithm.

• Find the peak in Dirty Image.

• Subtract a dirty beam (B) of approximate strength to remove its side-lobes.

• Construct CLEAN image I ′ using position and magnitude of subtracted components.

• Continue looping until some threshold level is met.

• Convolve the final I ′ with an idealized CLEAN beam.

Maximum Entropy Minimization

MEM method minimizes a smoothness function (”entropy”) in an image. Maximum entropy is
also called the all-poles model or auto-regressive model. For images with more than a million
pixels, this algorithm is faster than CLEAN algorithm. Details of the algorithm can be found
in [].

1.2.5 GMRT

National Centre for Radio Astrophysics ( NCRA ) has set up an international facility for radio
astronomical research in the metre wavelengths range of the radio spectrum known as the Giant
Metre wave Radio Telescope (GMRT). This is the world’s largest array of radio telescopes at
metre wavelengths and is located at a site about 80 km north of Pune. GMRT consists of 30
fully steerable gigantic parabolic dishes of 45m diameter each spread over distances of upto 25
km. There are fourteen telescopes randomly arranged in the central square 1 km by 1 km in
size, with a further sixteen arranged in three arms of a nearly ”Y”-shaped array each having a
length of 14 km from the array centre.

Antenna feeds at five different frequency centered at 153, 233, 327, 610, and 1420 MHz, with
polarization. The maximum baseline in the array gives the telescope an angular resolution (the
smallest angular scale that can be distinguished) of about 1 arc-second at the frequency of 1420
MHz.

1.2.6 Compressed Sensing formulation for Radio Interferometry

Equation (1.27) shows that under certain approximation, Visibility function is the Fourier
transform of source brightness. Radio Interferometers like GMRT measures visibility at very
few points on u − v plane. At a time GMRT measures 435(C(30, 2)) visibilities. Each pair of
antenna measures one visibility. This is shown in figure1(1.6) where each point represent one
visibility.

1Image by A. Basu, NCRA

http://ncra.tifr.res.in
http://gmrt.ncra.tifr.res.in
http://gmrt.ncra.tifr.res.in
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Figure 1.5: ”Y” shaped Array
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Figure 1.6: uv coverage at a time
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Due to rotation of earth, the projected separation between the antenna change and over
certain time it covers more point on the u− v plane. This is shown in figure 2(1.7)

Even after few hours of uv coverage (figure :1.7) uv coverage is not uniform. Clearly we
have under-sampled visibility data and hence Compressed Sensing methods proven to be viable
option. Equation (1.27) can be cast in to compressed sensing setting with visibilities as mea-
surement vector and partial 2-D Fourier matrix as measurement matrix and sky image as the
unknown. In radio astronomy, most of the sources are point source so, most of the time image
is sparse in euclidean image. However there are the cases in which we have to represent image
in some sparse basis which can be done with some extra effort as in case of other application of
compressed sensing.

1.2.7 Why Compressed Sensing in Radio Astronomy?

In general, Compressed Sensing is advantageous when signals are sparse in some known basis,
measurements are expensive and computations are cheaper at receiving end. These situations
make Compressed Sensing methods a strong candidate for image deconvolution problem in radio
astronomy.

Compressed Sensing methods can directly reconstruct the image from the sparse observations,
without the need for an iterative deconvolution. Also it will be very efficient technique, when the
2-D approximation to Van Cittert-Zernike Theorem breaks. Further with the advent of recent
efficient and robust `1 based algorithms, Compressed Sensing takeover mainstream deconvolu-
tion methods used in Radio Astronomy like CLEAN and Maximum Entropy minimization as
discussed in section 2.4.

2Image by A. Basu, NCRA



Chapter 2

Algorithms for Compressed Sensing

2.1 Algorithms

Convex Optimization is a sub field of Optimization which can produce reliable solutions
and can be solved exactly. Many signal processing problems can be formulated as convex
optimization problems of form

minimizex∈RN f1(x) + f2(x) + ...+ fn−1(x) + fn(x) (2.1)

where f1, f2, ..., fn are convex functions defined from f : RN → R where some of the functions
are non-differentiable, this which rules out our conventional smooth optimization techniques
like Steepest decent method, conjugate gradient method etc. We have explored the class of
algorithms which can solve equation (2.1). These methods proceed by splitting, in that the
functions f1, ..., fn are used individually so as to yield an easily implementable algorithm. They
are called proximal because each non smooth function in 2.1 is involved via its proximity oper-
ator. Iterative thresholding, projected Landweber, projected gradient, alternating projections,
alternating-direction method of multipliers, alternating split Bregman are special instances of
proximal algorithms. Details of proximal methods are discussed in [9].

Notations

Here after, RN is the N -dimensional euclidean space and domain of function f : RN →
]−∞,+∞].

Let C be the non-empty convex subset of RN . The indicator function of C is defined as

iC : x 7→
{

0 if x ∈ C
+∞ if x /∈ C (2.2)

p-norm is defined as ( ‖ . ‖p )

‖ x ‖p= (|x|p + |x|p + |x|p + ...|x|p)
1
p (2.3)

The distance form x ∈ RN to C is defined as

DC(x) = miny∈C ‖ x− y ‖ (2.4)

29
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If C is closed and convex, the projection of x ∈ RN onto C is the unique point PCx ∈ C such
that DC(x) =‖ x− PCx ‖2.

Sub differential of f is given by

∂f : RN → 2R
N

: x 7→ u ∈ RN |(∀y ∈ RN )(y − x)Tu+ f(x) ≤ f(y)) (2.5)

2.1.1 Proximal Gradient methods

One of the widely used convex optimization algorithm is POCS ( Projection Onto Convex
Sets ).This algorithm is employed to recover/synthesize a signal satisfying simultaneously several
convex constraints. Let fi be the indicator function of non-empty closed convex set Ci modeling
a constraint. This reduces to convex feasibility problem, which which require us to find a
solution such that it lies in the intersection of all convex sets Ci. In POCS method each set Ci
is incorporated by its projection operator PCi . So in each iteration x is updated as

xk+1 = PC1PC2 ...PCnxk (2.6)

However beyond such problems Projection operators are not appropriate and more general
operators are required to tackle them. Among the various generalizations of the notion of a
convex projection operator that exist, proximity operators are best suited for our purposes.

Proximity operators of function f at x is defined as

Definition. For every x ∈ RN , the minimization problem,

minimizey∈C f(y) +
1

2
‖ x− y ‖22 (2.7)

admits a unique solution which is denoted by proxf (x).

proxf (x) : RN → RN (2.8)

The proximity operator of f is characterized by inclusion

(∀(x, p) ∈ RN ×RN ) p = proxf (x)⇔ x− p ∈ ∂f(p) (2.9)

If f is differentiable then above equation reduces to

(∀(x, p) ∈ RN ×RN ) p = proxf (x)⇔ x− p ∈ Of(p) (2.10)

We are interested in algorithms which can solve equation (1.6) where n = 2 in reference with
equation (2.1). For notational convenience we use f(x) in place of f1(x) and λg(x) in place of
f2(x). Hence our optimization problem is

minimizex∈RN f(x) + g(x) (2.11)

collectively we say F (x) = f(x) + g(x) where f(x) =‖ Ax− b ‖22 and g(x) = λ ‖ x ‖1
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2.1.2 Derivation of Soft Thresholding

In our problem g(x) = λ ‖ x ‖1 and proxg(x) is called soft shrinkage thresholding1 operator
which minimizes following equation.

proxgx = argminy
1
2 ‖ x− y ‖

2
`2

+λ ‖ y ‖`1 (2.12)

Using definition of the `1-norm and the `2-norm we have

proxgx = argminy
1
2

i=n∑
i=1

(xi − yi)2 + λ

i=n∑
i=1

|yi| (2.13)

To find the minimizer in the above minimization problem, we have to consider three case
when yi > 0, yi < 0, yi = 0.

Case 1 : yi > 0

To get the gradient of objective function in equation () we have to differentiate it with
respect to each component and then equating each components to zero, the ith component is
given by

yi = xi − λ (2.14)

Case 2 : yi < 0

Similarly, considering each component yi ¡ 0, the minimizer will be given as

yi = xi + λ (2.15)

Case 3 : yi = 0

We have to find the condition for yi = 0 to be the unique minimizer. Then for

⇒ 1
2(x2i − 2xiyi + y2i ) + λ|yi| > 1

2x
2
i

⇒ yi + 1
2y

2
i + λ|yi| > 0

⇒
{
yi + 1

2y
2
i + λyi > 0 for yi > 0

yi + 1
2y

2
i − λyi > 0 for yi < 0

The above inequalities will hold anyways for sufficiently large yi. Let us therefore consider |yi|
to be arbitrarily close to zero. If the inequalities above are to hold for any arbitrarily small |xi|,
we must have

|xi| ≤ λ for yi = 0 (2.16)

Combining equation (2.14) and (2.15) we get

proxgx = (|xi| − λ)× sgn(yi) if |yi| > 0 (2.17)

1Derived by Prof. Mihir Arjunwadkar
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where,

sgn(yi) =


1 if yi > 0
0 if yi = 0
−1 if yi < 0

(2.18)

Further, incorporating equation (2.16), we have soft thresholding operator as

proxg(xi) = max(|xi| − λ)× sgn(yi) (2.19)

Note in above equation prox operator is applied on each of the component of x.

2.1.3 ISTA and FISTA Algorithms

The ISTA (Iterative Shrinkage-Thresholding Algorithm)and FISTA (Fast Iterative Shrinkage-
Thresholding Algorithm) [2] methods minimizes functions of the form

F (x) = f(x) + g(x) (2.20)

where

• x ∈ RN ;

• f : RN → R : smooth, convex continuously differentiable with Lipschitz continuous
gradient L(f):

‖∇f (x)−∇f (y)‖2 ≤ L(f) ‖x− y‖2 for every x, y ∈ RN

where L(f) > 0 is the Lipschitz constant for ∇f (x); and

• g : RN → R : continuous, convex, but possibly non-smooth function.

In each iteration, these algorithms calculate

xi = proxg(xi−1 − tiOf(x)) (2.21)

where, ti is the step-size parameter. From definition of proximity operator, when g(x) = 0
then above equation (2.21) is given as

xi = xi−1 − tiOf(x) (2.22)

for minimizing the function with a Lipschitz continuous gradient L(f). On the other hand if
f(x) = 0, then equation (2.21) reduces to

xi = proxg(xi−1) (2.23)

for minimizing non-differentiable function. Such schemes are called as forward-backward prox-
imal splitting ([9]). with forward scheme as gradient step using f(x) and backward or implicit
scheme using the function g(x). Further prox operator for FISTA and ISTA is soft thresholding
operator derived in section 3.3. There are two variants of each of these algorithms — One with
a fixed step size t and the other with varying step size ti or backtracking. The pseudo codes of
these algorithms are discussed in next section.
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2.1.4 Pseudo Codes

ISTA (fixed step length)

Define

QL(x, y) := g(x) + f(x) + (x− y)T∇f(y) +
1

2
L ‖x− y‖22 , (2.24)

which is a quadratic approximation to F at y, and

proxg(y) := arg min
x∈RN

{QL(x, y)} = arg min
x∈RN

{
g(x) +

L

2

∥∥∥∥x− (y − 1

L
∇f (y)

)∥∥∥∥2
2

}
, (2.25)

which is the minimizer of QL given f, g, L and y.

Algorithm 1 ISTA with Constant Step size

Require: x0 ∈ RN , L := L(f).
k := 0
repeat

k := k + 1
xk := prox(xk−1)

until Convergence.

The Step size is constant in this algorithm which is 1/L where L is Lipschitz constant of
∇f (()x).

One can think of another variant of above algorithm with varying step size called backtracking
algorithms. In worst case scenario, backtracking algorithms can take exponential amount of
time. But in-spite of this limitation, backtracking algorithms actually work well in practice.
Further, in ISTA algorithm backtracking precludes the computation of Lipschitz constant in
advance, which is an added advantage. Following algorithm is the backtracking version of
ISTA.

ISTA (Backtracking)

FISTA (fixed step length)

Fast Iterative-Shrinkage Thresholding Algorithm (FISTA) is the faster version of ISTA al-
gorithm which at the preserve the simplicity of ISTA. It is theoretical and practical rate of
convergence is significantly better. FISTA chooses new point yk and easy to compute.

FISTA (Backtracking)

The stopping criterion for the all the above algorithms are given as∣∣∣∣f(xk)− f(xk−1)

f(xk−1)

∣∣∣∣ < ε (2.26)
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Algorithm 2 ISTA with Variable Step size/Backtracking

Require: x0 ∈ RN , L > 0, η > 1.
k := 0
L := L/η
repeat

k := k + 1
repeat
L := ηL
z := proxg(xk−1)

until F (z) ≤ QL(z, xk−1)
xk := z

until Convergence.

Algorithm 3 FISTA with Constant Step size

Require: x0 ∈ RN , L := L(f).
k := 0
t := 1
y := x0
repeat

k := k + 1
xk := proxg(y)
u := t
t := 1+

√
1+4u2

2
y := xk +

(
u−1
t

)
(xk − xk−1)

until Convergence.

Algorithm 4 FISTA with Variable Step size/Backtracking

Require: x0 ∈ RN , L > 0, η > 1.
k := 0
L := L/η
t := 1
y := x0
repeat

k := k + 1
repeat
L := ηL
z := proxg(y)

until F (z) ≤ QL(z, y)
xk := z
u := t
t := 1+

√
1+4u2

2
y := xk +

(
u−1
t

)
(xk − xk−1)

until Convergence.
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where ε is some arbitrarily small quantity typically 10−7.

2.1.5 Essential Convergence Behaviour

ISTA. The Convergence rate of these algorithms has been investigated in [2] and [11]. Error
at the kth iteration with respect to the true minimum x∗ is bounded as F (xk) − F (x∗) ≤
O (1/k) . This worst-case complexity of both ISTA variants (Algorithms 1 and 2) is established
by Theorem 3.1 in [2]. The sequence of function values F (xk) generated by ISTA is non-
increasing.

FISTA. Error at the kth iteration with respect to the true minimum x∗ is bounded as F (xk)−
F (x∗) ≤ O

(
1/(k + 1)2

)
The algorithms with convergence rate o(1/k2) is discussed in classical

work of [15] and Theorem 4.4 in [2]. The sequence of function values F (xk) generated by FISTA
need not necessarily be non-increasing.

2.1.6 A-Matrix for Radio Interferometry

From Van CittertZernike theorem we have A matrix as

A =



e−2πi(u1l1+v1m1) e−2πi(u1l1+v1m2) ... e−2πi(u1ln+v1mn)

e−2πi(u2l1+v2m1) e−2πi(u2l1+v2m2) ... e−2πi(u2ln+v2mn)

e−2πi(u3l1+v3m1) e−2πi(u3l1+v3m2) ... e−2πi(u3ln+v3mn)

: : : ::: :

e−2πi(uM−1l1+vM−1m1) e−2πi(uM−1l1+vM−1m2) ... e−2πi(uM−1ln+vM−1mn)

e−2πi(uM l1+vMm1) e−2πi(uM l1+vMm2) ... e−2πi(uM ln+vMmn)


(2.27)

In short element at ith row and jth of A matrix is given by

(A)OJ = e−2πi(uilj+vimj) (2.28)

2.1.7 Speed of Algorithms

All the variants of ISTA algorithms which we had discussed in Section 3.5 computes the
gradient of differentiable term f(x) in equation (??) in every iteration. The gradient of f(x) =‖
Ax− b ‖2`2 at kth iteration is given by

5f(xk) = 2(A†Axk −A†b) (2.29)

A†A and A†b which is constant for all iterations, needs to be computed in advance. Par-
ticularly, computation of A†A dominates speed of these algorithms. If we consider a typical
sensing matrix A of order M ×N with complex entries then we require huge amount of memory
space ( for M = 104 and N = 106 ≈ 16000GB ) for storing full A†A, which is impractical.
Further computation of A†A by usual matrix multiplication will require roughly MN2 complex
computation.

One can always look for the symmetry’s in A†A in order to reduce the computational cost of
the constructing it. For example, if A†A is Hermitian then this reduces space complexity and
time complexity of computing it by more than half if we store only unique elements in A†A.
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Each of element of A†A is given by

(A†A)ij =

k=M∑
k=1

e2πi[ukli−lj)+vk(mi−mj)] (2.30)

A†A is real

Since u-v plane is symmetric Visibilities exist in conjugate pairs. Equation () can be written
as

(A†A)ij = e2πi[u1li−lj)+v1(mi−mj)]+e−2πi[u1li−lj)+v1(mi−mj)]+...+e−2πi[utli−lj)+vt(mi−mj)] (2.31)

where t = M/2. In above equation each consecutive pairs forms the conjugate pairs of each
other whose result is real. Further using Euler’s formula eiθ = cos(θ)+isin(θ) and using identity
eiθ + e−iθ = 2cos(θ), above equation () reduced to

(A†A)ij =
k=t∑
k=1

2cos(2π[ukli − lj) + vk(mi −mj)]) (2.32)

Equation (2.32) shows that each element of A†A is real.

A†A is Symmetric

Equation () shows that, (A†A)ij and (A†A)ji forms complex conjugate pairs (i.e. (A†A)ij =
(A†A)∗ji). Further, A†A is real (proved in section ), which proves that A†A is symmetric2.

A†A is block toeplitz with toeplitz block

Further for regular l−m, in general it can be seen in color map of A†A (2.1) that it is block
toeplitz with each block as toeplitz block. These symmetries reduces the computational com-
plexity of computing and space complexity of storing A†A by a significant amount. Toeplitz
matrices (refer appendix) has degree of freedom of 2N − 1 for N ×N matrix. So if we recon-

structing image of n×n where n =
√
N , we have only (2

√
N−1)(2

√
N−1)

2 unique elements. Hence
we can construct A†A with approximately 4N element computation of A†A.

2.2 Implementation

2.2.1 MATLAB Implementation

The algorithms as mentioned in Section 3.5 require computations of large matrices. In partic-
ular, they require eigenvalue computations, matrix-matrix multiplications, matrix-vector multi-
plications and other algebraic transformations. Considering MATLAB’s capabilities to perform
the required computations with programming abstractions, it is considered as an appropri-
ate tool for initial implementations. Also, MATLAB’s Toolbox for Image Processing provides
additional advantage for exploratory analysis of images from Radio Interferometry data sets.

2proved by Dr. Niruj Mohan Ramanujam
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Figure 2.1: An example of A†A for N=64
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Further, algorithmic implementations were developed for all four variants of Iterative Shrink-
age Thresholding Algorithms. Exploratory analysis via empirical validation were carried out
by investigating the run-time complexities of the algorithms. CPU time taken were recorded,
compared and evaluated. Performance benchmark trials were carried out by varying the num-
ber of iterations and the penalty parameter for determining their optimal values. Objective
function values at each iteration were stored with a specified numerical accuracy. Robustness of
the algorithmic implementation was validated by performing repeated trials with varying data
sets each representing single point source, double point sources and grid point sources.

Input Data

Initially, data sets with characteristics similar to the original data sets of the FITS files were
simulated using the AIPS tool for single point source and double point sources with varying
fluxes. Each row of data set consist of a u, v, w co-ordinates, amplitude and phase of visibility
measured.

Processing

Parameters required for processing the data sets are

• Lipschitz constant (L) for fixed step size variants which is maximum eigenvalue of A†A.

• Backtracking parameter (η). For both backtracking variants η value is taken as 1.125.

• Penalty parameter (0 < λ <∞).

• Maximum Iteration Number (maxiter) which is one of the stopping criterion formats the
algorithms.

• Tolerance limit explained by equation (2.26).

After parameters are decided, A matrix is computed using u− v co-ordinates from data sets
and regular l −m grid using equation (2.27). Visibilities are computed in a + ib format using
phase and amplitude and were stored in b vector which is our measurement vector. Further,
each variants of algorithms require A†A, A†b which are computed as discussed in Section 3.7.
Finally, following processed inputs are given to algorithms

• A†A

• A†b

• Lipschitz constant (L) (for fixed step size)

• Penalty parameter (λ)

• Backtracking Parameter (η) (for backtracking)

• Initial guess of solution which is zero vector

• Maximum iteration (maxiter)

• Tolerance limit (typically 10−7)
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Output data

All four algorithms gives exactly the same solution vector with high numerical accuracy
for single point source and double point source data set. By plotting the objective function
values with each iterations it was clear that FISTA variants perform better than ISTA. Further,
backtracking algorithms scores over fixed step size algorithms for radio interferometric data
sets.

2.2.2 C Implementation

For the reasons of speed, efficiency, flexibility and to include Compressed Sensing formulation
in GMRT pipeline, all algorithms are implemented in C. Radio Interferometry data sets are
available in Flexible Image Transport System (FITS) formats (see appendix). We use Read-
Write FITS (RWFITS) 3. for reading the FITS file, in a specific structure which is further read
for u, v, w and visibility data.

The structure of C-code is shown in Figure (2.2). The Data, after being read from FITS file
are given to processing block which compute the inputs needed by algorithms as discussed in
previous section. Since there is lot of symmetry in A†A (discussed in Section 3.7) and A (due
to symmetry in uv plane), there are options in the code for using these symmetries. Finally
these computed matrices are given to the Compressed Sensing solvers, each algorithm gives
same solution image with high precision accuracy. This reconstructed solution image is written
back in to FITS file format using cfitsio (see appendix) routines.

For Basic linear algebra operations we have used intel’s implementation of LAPACK and
BLAS library, which performs matrix-matrix, matrix-vector, eigenvalue computations efficiency.

3written by Prof. Jayaram N. Chengalur
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Figure 2.2: Flowchart of C Code



Chapter 3

Results and Discussion

3.1 A Toy Model

3.1.1 Formulation

To get the feel of Compressed Sensing, we applied its framework on various toy models.
One such model is spike train model in which A matrix or sensing matrix of order M × N is
random Gaussian matrix with normalized i.i.d entries. We constructed hypothetical example
with known M = 40 random measurements (b vector) for a particular 40 × 100 A matrix and
it is also known that x vector which we have to reconstruct, has four spikes. Figure (3.1 is an
plot of original vector in which X-axis denotes the component number and Y axis represents
values at each components. Indeed x is sparse as most of its components are either zero or
approximately equal to zero. We had also added normally distributed Gaussian noise in the
measurement vector as in real scenario every measurements comes with the noise.

3.1.2 Tools used

Next step was to apply compressed sensing or `1 minimization algorithms to this problem,
we used MATLAB as a tool for this analysis and CVX, which is matlab program for disciplined
convex programming, is used to solve 1.6 formulated for this problem. ( for more information
refer CVX user Guide ).

3.1.3 Results and Discussion

Figure 3.1 shows plot of original vector with X-axis as component number and Y-axis as
corresponding value at each components. Figure shows that plotted vector is sparse and has
only four significant values or spikes.

Figure 3.2 shows plot of reconstructed vector (shown with dotted red line) and original vector
(dotted blue line). With small variation reconstructed vector overlaps the original vector.

CVX internally use Interior point methods ([13]) for solving equation (1.6) for the given
problem. This basic linear programming method has no performance issues while dealing with
problems of such small scale but suffer for poor convergence rate otherwise. For this toy problem,
interior point algorithm or CVX converges in 127 iterations. Further, CVX does not require
any penalty parameter for minimization process.

41
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Figure 3.1: Original Vector

Figure 3.2: Reconstructed Vector
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3.2 Reconstructing Single and Double Point Sources

3.2.1 Input

We have considered the images of single point source with illumination at center pixel of the
image and double point sources with at centre and along the main diagonal. Both point sources
have different fluxes and ratio of the fluxes at center to other is 0.8. We have used following
input parameters for the algorithms.

3.2.2 Input Parameters

Following are the input parameters used for reconstruction.

• Lipschitz constant (L) (for fixed step size variants) = maximum eigenvalue of A†A.

• Backtracking parameter (η) = 1.125.

• Varied Penalty parameter from (10−4 < λ < 104).

• Maximum Iteration Number (maxiter) = 10000.

• Tolerance limit = 10−7.

3.2.3 Output

Figure 3.3 with λ = 1150 shows reconstructed image of single point source of flux 0.4 at
the center. We had produced such images for various values of λ to check the effect of λ on
reconstruction.

Figure 3.4 with λ = 1150 shows reconstructed image of double point source at specific pixels.
Recovered image has to ratio of fluxes (flux at center pixel : flux at other) is ∼ 0.8.

Figure 3.5 shows the reconstructed image with different λ values for all solvers. FistaF
denotes Fista with fixed step size and similarly others.

3.3 Discussion

3.3.1 Effect of Penalty Parameter

Equation (1.6) in which residuals are measured with `2 norm and regularization is done with
`1 norm, seeks the solution that is close (in `2 norm) to the measured corrupted signal b and the
one that is sparse. By varying the penalty parameter λ ( aka regularization parameter) one can
find out the optimal trade-off between ‖ Ax− b ‖`2 (fidelity term)and ‖ x ‖`1( sparsity inducing
term ).

Penalty parameter varies form 0 to ∞. In practical applications, for smaller value of λ in
equation (1.6) put more emphasis on fidelity term, thereby neglecting sparsity in the solution.
On the other hand, larger values of λ put more weight on sparsity inducing term and leads
to sparsest solution which is zero vector. So finding out the optimal trade-off between these
bi-criterion objectives requires optimal value of regularization parameter.

Figure 3.6 shows the reconstructed image of single point source with point source at the
center. Due to very small λ = 10−4, this leads to just the least solution which is not sparse.
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Figure 3.3: Reconstructed Image of Single point source with λ = 1150

Figure 3.4: Reconstructed Image of Double point source with λ = 1150
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Figure 3.5: Reconstructed Image of Double point source with λ = 1150
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Figure 3.7 shows the reconstructed image of same single point source with point source at
the center. Large value λ = 104 gives zero solution as discussed.

For certain optimal λ = 1150 (found out by simulations), Figure shows reconstruction of
single point source exactly.

Figure 3.6: Reconstruction of single point source for λ = 0.001
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Figure 3.7: Reconstruction of single point source for λ = 10000

3.3.2 Convergence of algorithms

Figure 3.8, shows the convergence of algorithms with respect to iteration number. It is clear
that FISTA shows better performance than ISTA algorithms which is also theoretically proved.
Further backtracking variants of both algorithms seems to perform much better then their
corresponding fixed step size variants. All four algorithms reaches the same optimal value and
with same reconstructed image.
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Figure 3.8: Convergence of Algorithms

3.3.3 Flux fidelity

Single point source and double point source reconstruction discussed in last chapter are done
with varying fluxes of illuminated pixels of image. This is done to check flux fidelity with the
penalty parameter. We have used various data set for single point source of fluxes 0.05, 0.1,
0.5, 1, 10 and 100 and double point sources we have used flux ratios as 0.1, 0.2, 0.4, 0.6 and
0.8. 3.9 shows one of the result for single point source of flux 0.4.

Figure 3.9 shows the plot peak value of the reconstructed image of single point source with
flux value 0.4 (discussed in Section 6.3) with respect to penalty parameter varying from 10−4 to
104 (Reconstructed Images in this range of penalty parameter can be seen in Fig 6.3 in Chapter
6). It is clear from the plot that certain optimal range of penalty parameter flux of single point
source recovered is 0.4.
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Figure 3.9: Peak Value vs Penalty Parameter
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Chapter 4

Summary and Conclusion

We have evaluated a new frame work called Compressed Sensing for image reconstruction prob-
lem in Radio Interferometry. We have explored the class of algorithms called Proximal Gradient
methods for efficient algorithms suitable for Radio-interferometric data. Finally we concluded
that ISTA and FISTA algorithms along with their variants gives better performance and shows
significant improvement in image visual quality over mainstream deconvolution algorithms like
CLEAN. Further analysis, and work by other authors show that FISTA and its variants are capa-
ble of competing favourably with traditional image reconstruction methods in radio astronomy
in normal scenarios, and will do much better in special cases (like 3D imaging, multi-frequency
synthesis etc). We have, though a toy model, investigated and identified the core problems
involved in such an exercise, and have gone on to implement a working code for applying
compressed sensing to radio interferometric data from the GMRT. Along with collaborators at
NCRA, we are currently involved in solving the remaining outstanding issues - namely, choosing
an optimal penalty parameter, fidelity of flux reconstruction, and computational efficiency for
large data sets. The code, which is a result of this project, will be further developed at NCRA
into a full-fledged pipeline for the GMRT data, over the coming months. Possibilities for future
work include the following:

1. To estimate optimal value of penalty parameter

2. To solve full Van CittertZernike equation.

3. To create a library of basis matrix.

4. Modify the algorithm for gridded Visibilities.

5. Modify the C code for all the above cases.
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